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Shortest Path Algorithms: Comparison

Dijkstra’s
Shortest path from one node to all other nodes

Bellman-Ford
Shortest path from one node to all other nodes
Negative edges allowed
Detect the presence of negative weight cycle

Floyd-Warshall
Shortest path between all pair of vertices
Negative edges allowed

A. K. Dash April 4, 2019 Floyd-Warshall’s Algo 2 / 14



widthwidth

Shortest Path Algorithms: Comparison

Dijkstra’s
Shortest path from one node to all other nodes

Bellman-Ford
Shortest path from one node to all other nodes
Negative edges allowed
Detect the presence of negative weight cycle

Floyd-Warshall
Shortest path between all pair of vertices
Negative edges allowed

A. K. Dash April 4, 2019 Floyd-Warshall’s Algo 2 / 14



widthwidth

Shortest Path Algorithms: Comparison

Dijkstra’s
Shortest path from one node to all other nodes

Bellman-Ford
Shortest path from one node to all other nodes
Negative edges allowed
Detect the presence of negative weight cycle

Floyd-Warshall
Shortest path between all pair of vertices
Negative edges allowed

A. K. Dash April 4, 2019 Floyd-Warshall’s Algo 2 / 14



widthwidth

Problem Definition

Suppose we are given a directed graph G = (V, E) and a weight
function w : E → R .

We assume that ‘G’ doesn’t contain any negative weight cycle.

The All-Pairs Shortest Path problem asks to find the length of the
shortest path between any pair of vertices in ‘G’.
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Solutions Using Previous Knowledge

If the weight function is nonnegative for all edges, then we can use
Dijkstra’s single source shortest path algorithm for all vertices to
solve problem.

Complexity of Above Approach

◮

Linear array implementation of min-priority queue: O(V 3 + V E)

◮

Fibonacci Heap implementation of min-priority queue: O(V 2logV + V E)
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Solutions Using Previous Knowledge (Cont...)

If negative edge weights are allowed, we cannot use Dijkstra’s
method, rather we have to use Bellman-Ford algorithm for all vetices
to solve the problem i.e. |V | times.

Complexity of this Approach

◮

General case: O(V 2E)

◮

Dense Graph: O(V 4)

CAN WE DO BETTER ?
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Floyd - Warshall Algorithm

Uses Dynamic Programming Approach.

For a graph G = (V, E), runs in O(V 3) time.

Uses Adjacency matrix representation of graph.

Alert
Negative-weight edges may be present, but we assume that “no Negative
weight cycles” ..
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Representation of the Input

The input is represented by a weight matrix

W = (wij)(i,j) in E

and is defined by,

wij =

󰀻
󰀿

󰀽

0, if i = j
w(i, j), if i ∕= j and(i, j) in E
∞, if i ∕= j and(i, j) not in E
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Format of the Output

If the graph has V vertices, we return a distance matrix D, where
each element (dij) is the shortest length of the path from i to j.
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Intermediate Vertices

Without loss of generality, we’ll assume that V = {1, 2, . . . , n} i.e.
the vertices of the graph are numbered form 1 to n.

Given a path p = 〈v1, v2, . . . , vm〉 in the graph, we’ll call the vertices
vk with index ‘k’ in {2, 3, . . . , m − 1} as the intermediate vertices of
p.

A. K. Dash April 4, 2019 Floyd-Warshall’s Algo 9 / 14
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Key Ideas

The key to Floyd-Warshall algorithm is the following definition.

◮ Definition: Let d
(k)
ij denote the length of the shortest path form ‘i’

to ‘j’ such that all intermediate vertices are contained in the set
{1, 2, . . . , k}.

A shortest path doesn’t contain any vertex twice, as this would
imply that the path contains a cycle.

By assumption, cycles in the graph have a positive weight. So
removing the cycle would result in a shorter path.

A. K. Dash April 4, 2019 Floyd-Warshall’s Algo 10 / 14
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Definitions from Key Ideas

Consider a shortest path p from ‘i’ to ‘j’ such that the intermediate
vertices are form the set {1, 2, . . . , k}.

◮

If the vertex k is not an
intermediate vertex on p, then

d
(k)
ij = d

(k−1)
ij

◮

If the vertex k is an
intermediate vertex on p, then

d
(k)
ij = d

(k−1)
ik + d

(k−1)
kj

Interestingly, in either case, the subpaths contain merely nodes from
{1, 2, . . . , k − 1}.

Therefore, we can conclude that :

d
(k)
ij = min{d

(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj }

A. K. Dash April 4, 2019 Floyd-Warshall’s Algo 11 / 14
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Recursive Formulation

If we don’t use intermediate nodes i.e. when k = 0 , then

d
(0)
ij = wij

if k > 0, then

d
(k)
ij = min{d

(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj }

Mathematically,

d
(k)
ij =

󰀻
󰀿

󰀽

wij , if k = 0

min{d
(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj }, if k > 0
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The Floyd-Warshall Algorithm

Floyd-Warshall(W )

1 n ← rows[W ]
2 D(0) ← W
3 for k ← 1 to n
4 do for i ← 1 to n
5 do for j ← 1 to n

6 do d
(k)
ij ← min{d

(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj }

7 return D(n)
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Time and Space Requirements

1

The running time is O(V 3).

2

However, in this version the space requirements are very high.
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