All-Pairs Shortest Paths

(The Floyd-Warshall Algorithm)

Mr. Ajaya Kumar Dash

ajaya@iiit-bh.ac.in https://dash-ajay.github.io/

Department of Computer Science and Engineering

IIIT, Bhubaneswar

April 4, 2019

Shortest Path Algorithms: Comparison

- Dijkstra's
 - Shortest path from one node to all other nodes

Shortest Path Algorithms: Comparison

- Dijkstra's
 - Shortest path from one node to all other nodes
- Bellman-Ford
 - Shortest path from one node to all other nodes
 - Negative edges allowed
 - Detect the presence of negative weight cycle

Shortest Path Algorithms: Comparison

- Dijkstra's
 - Shortest path from one node to all other nodes
- Bellman-Ford
 - Shortest path from one node to all other nodes
 - Negative edges allowed
 - Detect the presence of negative weight cycle
- Floyd-Warshall
 - Shortest path between all pair of vertices
 - Negative edges allowed

Problem Definition

• Suppose we are given a directed graph G=(V,E) and a weight function $w:E\to R$.

• Suppose we are given a directed graph G=(V,E) and a weight function $w:E\to R$.

• We assume that 'G' doesn't contain any negative weight cycle.

• Suppose we are given a directed graph G=(V,E) and a weight function $w:E\to R$.

- We assume that 'G' doesn't contain any negative weight cycle.
- The All-Pairs Shortest Path problem asks to find the length of the shortest path between any pair of vertices in 'G'.

Solutions Using Previous Knowledge

Complexity of Above Approach

Complexity of Above Approach

• Linear array implementation of min-priority queue: $O(V^3 + VE)$

Complexity of Above Approach

- Linear array implementation of min-priority queue: $O(V^3 + VE)$
- Fibonacci Heap implementation of min-priority queue: $O(V^2 log V + VE)$

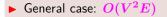
• If negative edge weights are allowed, we cannot use Dijkstra's method, rather we have to use Bellman-Ford algorithm for all vetices to solve the problem i.e. |V| times.

• If negative edge weights are allowed, we cannot use Dijkstra's method, rather we have to use Bellman-Ford algorithm for all vetices to solve the problem i.e. |V| times.

Complexity of this Approach

• If negative edge weights are allowed, we cannot use Dijkstra's method, rather we have to use Bellman-Ford algorithm for all vetices to solve the problem i.e. |V| times.

Complexity of this Approach



• If negative edge weights are allowed, we cannot use Dijkstra's method, rather we have to use Bellman-Ford algorithm for all vetices to solve the problem i.e. |V| times.

• If negative edge weights are allowed, we cannot use Dijkstra's method, rather we have to use Bellman-Ford algorithm for all vetices to solve the problem i.e. |V| times.



CAN WE DO BETTER ?

Floyd - Warshall Algorithm

• Uses Dynamic Programming Approach.

- Uses Dynamic Programming Approach.
- For a graph G = (V, E), runs in $O(V^3)$ time.

Floyd - Warshall Algorithm

- Uses Dynamic Programming Approach.
- For a graph G = (V, E), runs in $O(V^3)$ time.
- Uses Adjacency matrix representation of graph.

Floyd - Warshall Algorithm

- Uses Dynamic Programming Approach.
- For a graph G = (V, E), runs in $O(V^3)$ time.
- Uses Adjacency matrix representation of graph.

Alert

Negative-weight edges may be present, but we assume that "no Negative weight cycles" ..

Representation of the Input

• The input is represented by a weight matrix

$$W = (w_{ij})_{(i,j) in E}$$

and is defined by,

• The input is represented by a weight matrix

$$\boldsymbol{W} = (\boldsymbol{w}_{\boldsymbol{i}\boldsymbol{j}})_{(i,j) \text{ in } E}$$

and is defined by,

$$\boldsymbol{w_{ij}} = \begin{array}{cc} 0, & \text{if } i = j \\ w(i,j), & \text{if } i \neq j \text{ and}(i,j) \text{ in } E \\ \infty, & \text{if } i \neq j \text{ and}(i,j) \text{ not in } E \end{array}$$

Format of the Output

 If the graph has V vertices, we return a distance matrix D, where each element (d_{ij}) is the shortest length of the path from i to j.

Intermediate Vertices

• Without loss of generality, we'll assume that $V = \{1, 2, ..., n\}$ i.e. the vertices of the graph are numbered form 1 to n.

Intermediate Vertices

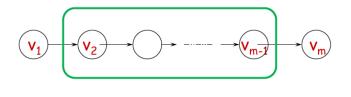
• Without loss of generality, we'll assume that $V = \{1, 2, ..., n\}$ i.e. the vertices of the graph are numbered form 1 to n.

• Given a path $p = \langle v_1, v_2, \dots, v_m \rangle$ in the graph, we'll call the vertices v_k with index 'k' in $\{2, 3, \dots, m-1\}$ as the intermediate vertices of **p**.

Intermediate Vertices

• Without loss of generality, we'll assume that $V = \{1, 2, ..., n\}$ i.e. the vertices of the graph are numbered form 1 to n.

• Given a path $p = \langle v_1, v_2, \dots, v_m \rangle$ in the graph, we'll call the vertices v_k with index 'k' in $\{2, 3, \dots, m-1\}$ as the intermediate vertices of **p**.



Key Ideas

A. K. Dash

• The key to *Floyd-Warshall* algorithm is the following definition.

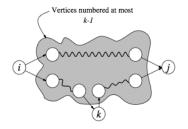
- The key to Floyd-Warshall algorithm is the following definition.
 - ▶ Definition: Let d^(k)_{ij} denote the length of the shortest path form 'i' to 'j' such that all intermediate vertices are contained in the set {1, 2, ..., k}.

- The key to *Floyd-Warshall* algorithm is the following definition.
 - ▶ Definition: Let d^(k)_{ij} denote the length of the shortest path form 'i' to 'j' such that all intermediate vertices are contained in the set {1, 2, ..., k}.
- A shortest path doesn't contain any vertex twice, as this would imply that the path contains a cycle.

- The key to *Floyd-Warshall* algorithm is the following definition.
 - ▶ Definition: Let d^(k)_{ij} denote the length of the shortest path form 'i' to 'j' such that all intermediate vertices are contained in the set {1, 2, ..., k}.
- A shortest path doesn't contain any vertex twice, as this would imply that the path contains a cycle.
- By assumption, cycles in the graph have a positive weight. So removing the cycle would result in a shorter path.

Consider a shortest path p from 'i' to 'j' such that the intermediate vertices are form the set {1,2,...,k}.

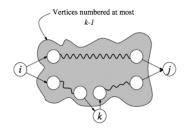
Consider a shortest path p from 'i' to 'j' such that the intermediate vertices are form the set {1,2,...,k}.



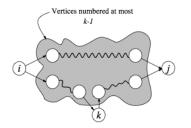
Consider a shortest path p from 'i' to 'j' such that the intermediate vertices are form the set {1,2,...,k}.

 If the vertex k is not an intermediate vertex on p, then

$$d_{ij}^{(k)} = d_{ij}^{(k-1)}$$



Consider a shortest path p from 'i' to 'j' such that the intermediate vertices are form the set {1,2,...,k}.



If the vertex k is not an intermediate vertex on p, then

$$d_{ij}^{(k)} = d_{ij}^{(k-1)}$$

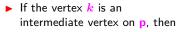
If the vertex k is an intermediate vertex on p, then

$$d_{ij}^{(k)} = d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$$

Vertices numbered at most k-1

- Consider a shortest path p from 'i' to 'j' such that the intermediate vertices are form the set {1,2,...,k}.
 - If the vertex k is not an intermediate vertex on p, then

$$d_{ij}^{(k)} = d_{ij}^{(k-1)}$$



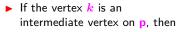
$$d_{ij}^{(k)} = d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$$

• Interestingly, in either case, the subpaths contain merely nodes from $\{1, 2, \ldots, k-1\}.$

i

- Consider a shortest path p from 'i' to 'j' such that the intermediate vertices are form the set {1,2,...,k}.
 - If the vertex k is not an intermediate vertex on p, then

$$d_{ij}^{\left(k\right)}=d_{ij}^{\left(k-1\right)}$$



 $d_{ij}^{(k)} = d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$

• Interestingly, in either case, the subpaths contain merely nodes from $\{1, 2, \ldots, k-1\}.$

• Therefore, we can conclude that :

Vertices numbered at most k-1

$$d_{ij}^{(k)} = \min\{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\}$$

i

• If we don't use intermediate nodes i.e. when k=0 , then

$$d_{ij}^{(0)} = w_{ij}$$

• If we don't use intermediate nodes i.e. when k=0 , then

$$d_{ij}^{(0)} = w_{ij}$$

• if k > 0, then

$$d_{ij}^{(k)} = \min\{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\}$$

• If we don't use intermediate nodes i.e. when k=0 , then

$$d_{ij}^{(0)} = w_{ij}$$

• if k > 0, then

$$d_{ij}^{(k)} = \min\{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\}$$

Mathematically,

$$\boldsymbol{d_{ij}^{(k)}} = \begin{cases} w_{ij}, & \text{if } k = 0\\ \\ \min\{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\}, & \text{if } k > 0 \end{cases}$$

The Floyd-Warshall Algorithm

FLOYD-WARSHALL(W)

FLOYD-WARSHALL(W)

 $1 \quad n \leftarrow \mathit{rows}[W]$

FLOYD-WARSHALL(W)

- 1 $n \leftarrow rows[W]$
- 2 $D^{(0)} \leftarrow W$


```
FLOYD-WARSHALL(W)

1 n \leftarrow rows[W]

2 D^{(0)} \leftarrow W

3 for k \leftarrow 1 to n

4 do for i \leftarrow 1 to n

5 do for j \leftarrow 1 to n
```



```
FLOYD-WARSHALL(W)

1 n \leftarrow rows[W]

2 D^{(0)} \leftarrow W

3 for k \leftarrow 1 to n

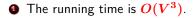
4 do for i \leftarrow 1 to n

5 do for j \leftarrow 1 to n

6 do d_{ij}^{(k)} \leftarrow min\{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\}

7 return D^{(n)}
```


Time and Space Requirements



• The running time is $O(V^3)$.

2 However, in this version the space requirements are very high.

